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Recreating Zarya’s Particle Cannon
Thanut (Art) Parkeenvincha

Terence So
Alfred Lam

Figure 1: A demonstration of our right-click projectile particle.

ABSTRACT
The aim of our project was to recreate the functionality and visuals
of Zarya’s Particle Cannon from the game Overwatch (2016). The
project would be done in the Unreal Engine, and involve a seamless
combination of programming, visual effects, and custom materials
and 3D meshes.

We initially set out to recreate all three functions of the Particle
Cannon: the Primary Fire (a beam attack), the Secondary Fire (a
bomb-like projectile), and the Ultimate Ability (which spawns a
black hole that pulls objects into its center).
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1 INITIAL RESEARCH
Because our goal was to recreate the Particle Cannon to the best
of our ability, our main source of research involved observing and
deconstructing how the Particle Cannon works in-game.

Using our copies of the game, we created a private server in
which we could collect reference footage of the Particle Cannon.We
recorded footage of the Primary Fire, Secondary Fire, and Ultimate
Ability from various angles which could be played back at either
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slower speeds or on a frame-by-frame basis.

Using this footage, our team was able to visually deconstruct the
individual components that made up the Particle Cannon’s look and
feel. From here, we assigned the individual components amongst
our team, and got to work on rebuilding these components in the
Unreal Engine.

2 IMPLEMENTATION
After much trial and error with sprite sheets, particle trails, and
flip book animations, we finally ended up implementing the left-
click laser ability using Niagara’s Beam particle. To do this, we first
created an emissive material to replicate the effect of the laser’s
light producing glow. Next, we used this material as the “beam” in
the Niagara emitter. The emitter itself consists of a single spawned
beam, with a scaled up width and length to imitate the long ranging
laser. In the Particle Update section, we then use a Uniform Range
to change the beam width over time, resulting in a wavy beam that
looks like it’s fluctuating over time. We then create a second, larger
width, purple colored emitter in the same manner, and stack it on
top as the “outer” glow of the laser. Finally, we create a third trails
emitter, which uses Niagara’s ribbon renderer to send small trails
of light outwards along the laser beam. This last part gives the laser
a more lifelike feeling, especially when viewed from the side.

On the functional side of the laser, we had to attach the laser
to the player, and have it fire whenever the left mouse button was
held down, along with loop a laser sound while firing. This was
accomplished in Blueprints by spawning a Particle System on click
with the “SpawnSystemAttached” function, which automatically
placed it where the player location was as well. The looping sound
was done by adding an AudioComponent to the player character
blueprint, and executing the “Play” and “Stop” nodes whenever the
mouse is pressed or released.

Some technicalities we were not able to finish in time were
making the laser stop or create a force on hitting an object or fine
tuning the beams to make them more realistic. For the former, we
may have needed to ray cast or otherwise find the closest object
in a straight line, in order to tell the Niagara system where to
stop with a passed-in variable - otherwise, there is no way for the
particle system to know how long to make the beam, since it has
no connection to the scene as a whole. For the latter, we could have
adjusted the materials and colors to make the effect seem more
cohesive, mostly through trial and error.

2.1 Materials
Custom materials were made with Unreal Engine’s Material Editor;
most of the work in this department involved learning how to use

the different nodes available in tandem with different PBR-based
channels.

Learning how to work with the Material Editor was relatively
painless after going through a couple online resources and tutorials
(plus a cursory background with Unity’s Shader Graph). However,
this part of the process still proved time-consuming as a fair amount
of fine-tuning was required to achieve the specific visual target that
we were aiming for.

After overviewing our reference footage, we found that the look
of the projectile itself and the explosion spawned from the projec-
tile were both made up of an “energy orb” effect, which featured
varied color and emission values depending on how close a point
was to the center of the sphere (in viewport space). By using the
Material Editor’s Fresnel node, we could differentiate how the edges
of objects were rendered compared to their “interiors”, since the
surface normals of a sphere always grow more perpendicular to
the viewing angle as you get closer to the edges in viewport space.
In addition, we learned that we could multiply the effects of our
Fresnel node with texture-sampled Normal maps to get a more non-
uniform look. Finally, swapping the Blend Mode of our materials to
“Translucent” allowed us to emphasize the “energy orb” effect while
allowing other visual components (like our particle effects) to shine.

In the game, the Particle Cannon also features a muzzle flash
upon firing. The muzzle flash contains a subtle distortion effect
which we also chose to implement via custom materials. By cre-
ating a material with 0% Opacity and toying with the Refraction
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channel, we could bend how the portion of the scene behind a ma-
terial was rendered without drawing an explicit, noticeable mesh.

The amount that the background scene is distorted by our mate-
rial varies depending on how close the rendered portion is to the
edge of the mesh; once again, this was achieved with Fresnel math.
Non-uniform levels of distortion makes the underlying mesh even
harder to detect, which granted meshes spawned with this material
a “felt-but-not-seen” quality.

Finally, we experimented with different meshes to apply our
distortion material to. Because distortion levels are based on the
Fresnel effect, we eventually found that a torus object created a
more visually interesting look as there were more surface normals
running perpendicular to the view angle.

2.2 Niagara
Many particle system were created to create the look of the pro-
jectile. The smoke trail, omnidirectional burst, explosion, and flare
systems just to name a few. The one we will focus on today is the

flare particle system.

To create this effect, a particle sprite is needed. We tried desper-
ately to scout out a sprite that was similar to the shape we desired.
However, we were unable to find it. We then decided it was easier
to create it ourselves.

It was time to hop into Niagara. We used the omnidirectional
burst template and tweaked it to our desired look. One of the most
important things was tomake sure the alignment modewas velocity
aligned. This makes it so that the billboard’s axis is in the direction
the particle is headed. This allows us to get a “stretched" looking
effect.

Because this was the omnidirectional burst template, it was
spawning from a reference sphere. We set the surface only band-
thickness to zero to guarantee that the particles spawn only at the
surface of the sphere.

We then create a slab with a thin thickness. All the particles that
spawn within this slab are to be kept, and the rest of the particles
that spawn outside are to be killed. This creates a rim-effect.

The result is a flare effect.

2.3 Scene
Our scene was created using assets from the Advanced Village
Pack from Unreal’s Marketplace. We utilized the 2 house meshes
that were given to create a small town scene, making more var-
ied looking buildings by combining the house meshes in different
ways. In addition, we added streetlights, but with our own added
point lights, since the actual meshes did not actually emit light in
the scene. Finally, we added interact able objects (the boxes and
watermelon) by using the physics system and changing the mass
and other properties of the objects. Creating the scene was perhaps
the simplest part of the project, involving mainly learning editor
controls, navigation, and importing and editing assets.
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3 LESSONS LEARNED
3.1 Blueprints
Working with Unreal was new to all of us, and learning its Blueprint
system, with its thousands of nodes and commands, was definitely
a challenge. Due to our unfamiliarity with the system, everything
from simply looping a soundtrack to spawning a particle system
on click required a lot of looking up tutorials and documentation
to accomplish. One of the key things we had trouble with was
understanding the difference between Actors and Components
in the system - the difference was subtle, but important. In the
end, “Actors” were simply a term used to describe anything in the
scene, which was made up of Components. This was significant in
our use of Blueprints, since a good amount of work was put into
making sure things were spawned at the correct location, with the
correct parent actors - done using nodes like “GetActorTransform”
or “GetActorFrom.”

Another thing we learned was how difficult it was to make
clear, understandable Blueprints - since nodes are executed in a
synchronous, linear order, adding functionality quickly resulted in
a mess of nodes and inter-crossing lines in the blueprint that was
difficult to understand. Given more time and for future reference,
we would definitely use more comment boxes and organize the
nodes and lines for better readability.

3.2 Version Control
One of our biggest regrets is the fact that we did not notice we could
integrate version control directly inside the editor. Instead, we used
the Git the traditional way. At first, we had a lot of trouble adding
things in due to the fact that many unnecessary things were being
committed. One such example is the Saved and Backups folder. But
after sorting through that, version control was easily implemented.

3.3 Niagara
Niagara was the biggest challenge of this project by far. The system
is still fresh, with barely any tutorials to be found online. In fact,
even the regular particle system that Unreal has barely has any tu-
torials either! A lot of trial and error was needed to understand how
the system worked. After spending time working on this project,
we are now more confident to work with it.

4 RESULTS
Our results are shown below:

5 REFERENCES
(1) Actors and Components - Unreal Engine -

https://docs.unrealengine.com/en-US/Programming
/UnrealArchitecture/Actors/index.html

(2) Niagara Documentation - Unreal Engine -
https://docs.unrealengine.com/en-US/Engine/Niagara/
index.html

5.1 Assets used
(1) Village Assets -

https://www.unrealengine.com/marketplace
/en-US/slug/advanced-village-pack

(2) Laser Sound - BMacZero - August 28, 2012 -
https://freesound.org/people/BMacZero/sounds/164102/
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