
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Recreating Zarya’s Particle Cannon
Thanut (Art) Parkeenvincha

Terence So
Alfred Lam

Figure 1: A demonstration of our right-click projectile particle.

ABSTRACT
The aim of our project was to recreate the functionality and visuals
of Zarya’s Particle Cannon from the game Overwatch (2016). The
project would be done in the Unreal Engine, and involve a seamless
combination of programming, visual effects, and custom materials
and 3D meshes.

We initially set out to recreate all three functions of the Particle
Cannon: the Primary Fire (a beam attack), the Secondary Fire (a
bomb-like projectile), and the Ultimate Ability (which spawns a
black hole that pulls objects into its center).

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CMPM 164, 2019
© 2019 Association for Computing Machinery.
https://doi.org/N/A

ACM Reference Format:
Thanut (Art) Parkeenvincha, Terence So, and Alfred Lam. 2019. Recreating
Zarya’s Particle Cannon. In ,. ACM, New York, NY, USA, 4 pages. https:
//doi.org/N/A

1 INITIAL RESEARCH
Because our goal was to recreate the Particle Cannon to the best
of our ability, our main source of research involved observing and
deconstructing how the Particle Cannon works in-game.

Using our copies of the game, we created a private server in
which we could collect reference footage of the Particle Cannon.We
recorded footage of the Primary Fire, Secondary Fire, and Ultimate
Ability from various angles which could be played back at either

2019-12-16 07:44. Page 1 of 1–4.

https://doi.org/N/A
https://doi.org/N/A
https://doi.org/N/A


Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CMPM 164, 2019 Parkeenvincha, So, and Lam

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

slower speeds or on a frame-by-frame basis.

Using this footage, our team was able to visually deconstruct the
individual components that made up the Particle Cannon’s look and
feel. From here, we assigned the individual components amongst
our team, and got to work on rebuilding these components in the
Unreal Engine.

2 IMPLEMENTATION
After much trial and error with sprite sheets, particle trails, and
flip book animations, we finally ended up implementing the left-
click laser ability using Niagara’s Beam particle. To do this, we first
created an emissive material to replicate the effect of the laser’s
light producing glow. Next, we used this material as the “beam” in
the Niagara emitter. The emitter itself consists of a single spawned
beam, with a scaled up width and length to imitate the long ranging
laser. In the Particle Update section, we then use a Uniform Range
to change the beam width over time, resulting in a wavy beam that
looks like it’s fluctuating over time. We then create a second, larger
width, purple colored emitter in the same manner, and stack it on
top as the “outer” glow of the laser. Finally, we create a third trails
emitter, which uses Niagara’s ribbon renderer to send small trails
of light outwards along the laser beam. This last part gives the laser
a more lifelike feeling, especially when viewed from the side.

On the functional side of the laser, we had to attach the laser
to the player, and have it fire whenever the left mouse button was
held down, along with loop a laser sound while firing. This was
accomplished in Blueprints by spawning a Particle System on click
with the “SpawnSystemAttached” function, which automatically
placed it where the player location was as well. The looping sound
was done by adding an AudioComponent to the player character
blueprint, and executing the “Play” and “Stop” nodes whenever the
mouse is pressed or released.

Some technicalities we were not able to finish in time were
making the laser stop or create a force on hitting an object or fine
tuning the beams to make them more realistic. For the former, we
may have needed to ray cast or otherwise find the closest object
in a straight line, in order to tell the Niagara system where to
stop with a passed-in variable - otherwise, there is no way for the
particle system to know how long to make the beam, since it has
no connection to the scene as a whole. For the latter, we could have
adjusted the materials and colors to make the effect seem more
cohesive, mostly through trial and error.

2.1 Materials
Custom materials were made with Unreal Engine’s Material Editor;
most of the work in this department involved learning how to use

the different nodes available in tandem with different PBR-based
channels.

Learning how to work with the Material Editor was relatively
painless after going through a couple online resources and tutorials
(plus a cursory background with Unity’s Shader Graph). However,
this part of the process still proved time-consuming as a fair amount
of fine-tuning was required to achieve the specific visual target that
we were aiming for.

After overviewing our reference footage, we found that the look
of the projectile itself and the explosion spawned from the projec-
tile were both made up of an “energy orb” effect, which featured
varied color and emission values depending on how close a point
was to the center of the sphere (in viewport space). By using the
Material Editor’s Fresnel node, we could differentiate how the edges
of objects were rendered compared to their “interiors”, since the
surface normals of a sphere always grow more perpendicular to
the viewing angle as you get closer to the edges in viewport space.
In addition, we learned that we could multiply the effects of our
Fresnel node with texture-sampled Normal maps to get a more non-
uniform look. Finally, swapping the Blend Mode of our materials to
“Translucent” allowed us to emphasize the “energy orb” effect while
allowing other visual components (like our particle effects) to shine.

In the game, the Particle Cannon also features a muzzle flash
upon firing. The muzzle flash contains a subtle distortion effect
which we also chose to implement via custom materials. By cre-
ating a material with 0% Opacity and toying with the Refraction

2019-12-16 07:44. Page 2 of 1–4.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Recreating Zarya’s Particle Cannon CMPM 164, 2019

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

channel, we could bend how the portion of the scene behind a ma-
terial was rendered without drawing an explicit, noticeable mesh.

The amount that the background scene is distorted by our mate-
rial varies depending on how close the rendered portion is to the
edge of the mesh; once again, this was achieved with Fresnel math.
Non-uniform levels of distortion makes the underlying mesh even
harder to detect, which granted meshes spawned with this material
a “felt-but-not-seen” quality.

Finally, we experimented with different meshes to apply our
distortion material to. Because distortion levels are based on the
Fresnel effect, we eventually found that a torus object created a
more visually interesting look as there were more surface normals
running perpendicular to the view angle.

2.2 Niagara
Many particle system were created to create the look of the pro-
jectile. The smoke trail, omnidirectional burst, explosion, and flare
systems just to name a few. The one we will focus on today is the

flare particle system.

To create this effect, a particle sprite is needed. We tried desper-
ately to scout out a sprite that was similar to the shape we desired.
However, we were unable to find it. We then decided it was easier
to create it ourselves.

It was time to hop into Niagara. We used the omnidirectional
burst template and tweaked it to our desired look. One of the most
important things was tomake sure the alignment modewas velocity
aligned. This makes it so that the billboard’s axis is in the direction
the particle is headed. This allows us to get a “stretched" looking
effect.

Because this was the omnidirectional burst template, it was
spawning from a reference sphere. We set the surface only band-
thickness to zero to guarantee that the particles spawn only at the
surface of the sphere.

We then create a slab with a thin thickness. All the particles that
spawn within this slab are to be kept, and the rest of the particles
that spawn outside are to be killed. This creates a rim-effect.

The result is a flare effect.

2.3 Scene
Our scene was created using assets from the Advanced Village
Pack from Unreal’s Marketplace. We utilized the 2 house meshes
that were given to create a small town scene, making more var-
ied looking buildings by combining the house meshes in different
ways. In addition, we added streetlights, but with our own added
point lights, since the actual meshes did not actually emit light in
the scene. Finally, we added interact able objects (the boxes and
watermelon) by using the physics system and changing the mass
and other properties of the objects. Creating the scene was perhaps
the simplest part of the project, involving mainly learning editor
controls, navigation, and importing and editing assets.

2019-12-16 07:44. Page 3 of 1–4.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

CMPM 164, 2019 Parkeenvincha, So, and Lam

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3 LESSONS LEARNED
3.1 Blueprints
Working with Unreal was new to all of us, and learning its Blueprint
system, with its thousands of nodes and commands, was definitely
a challenge. Due to our unfamiliarity with the system, everything
from simply looping a soundtrack to spawning a particle system
on click required a lot of looking up tutorials and documentation
to accomplish. One of the key things we had trouble with was
understanding the difference between Actors and Components
in the system - the difference was subtle, but important. In the
end, “Actors” were simply a term used to describe anything in the
scene, which was made up of Components. This was significant in
our use of Blueprints, since a good amount of work was put into
making sure things were spawned at the correct location, with the
correct parent actors - done using nodes like “GetActorTransform”
or “GetActorFrom.”

Another thing we learned was how difficult it was to make
clear, understandable Blueprints - since nodes are executed in a
synchronous, linear order, adding functionality quickly resulted in
a mess of nodes and inter-crossing lines in the blueprint that was
difficult to understand. Given more time and for future reference,
we would definitely use more comment boxes and organize the
nodes and lines for better readability.

3.2 Version Control
One of our biggest regrets is the fact that we did not notice we could
integrate version control directly inside the editor. Instead, we used
the Git the traditional way. At first, we had a lot of trouble adding
things in due to the fact that many unnecessary things were being
committed. One such example is the Saved and Backups folder. But
after sorting through that, version control was easily implemented.

3.3 Niagara
Niagara was the biggest challenge of this project by far. The system
is still fresh, with barely any tutorials to be found online. In fact,
even the regular particle system that Unreal has barely has any tu-
torials either! A lot of trial and error was needed to understand how
the system worked. After spending time working on this project,
we are now more confident to work with it.

4 RESULTS
Our results are shown below:

5 REFERENCES
(1) Actors and Components - Unreal Engine -

https://docs.unrealengine.com/en-US/Programming
/UnrealArchitecture/Actors/index.html

(2) Niagara Documentation - Unreal Engine -
https://docs.unrealengine.com/en-US/Engine/Niagara/
index.html

5.1 Assets used
(1) Village Assets -

https://www.unrealengine.com/marketplace
/en-US/slug/advanced-village-pack

(2) Laser Sound - BMacZero - August 28, 2012 -
https://freesound.org/people/BMacZero/sounds/164102/

2019-12-16 07:44. Page 4 of 1–4.


	Abstract
	1 Initial Research
	2 Implementation
	2.1 Materials
	2.2 Niagara
	2.3 Scene

	3 Lessons Learned
	3.1 Blueprints
	3.2 Version Control
	3.3 Niagara

	4 Results
	5 References
	5.1 Assets used


